566 research outputs found

    Decentralized information flow control for databases

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 177-194).Privacy and integrity concerns have been mounting in recent years as sensitive data such as medical records, social network records, and corporate and government secrets are increasingly being stored in online systems. The rate of high-profile breaches has illustrated that current techniques are inadequate for protecting sensitive information. Many of these breaches involve databases that handle information for a multitude of individuals, but databases don't provide practical tools to protect those individuals from each other, so that task is relegated to the application. This dissertation describes a system that improves security in a principled way by extending the database system and the application platform to support information flow control. Information flow control has been gaining traction as a practical way to protect information in the contexts of programming languages and operating systems. Recent research advocates the decentralized model for information flow control (DIFC), since it provides the necessary expressiveness to protect data for many individuals with varied security concerns.However, despite the fact that most applications implicated in breaches rely on relational databases, there have been no prior comprehensive attempts to extend DIFC to a database system. This dissertation introduces IFDB, which is a database management system that supports DIFC with minimal overhead. IFDB pioneers the Query by Label model, which provides applications with a simple way to delineate constraints on the confidentiality and integrity of the data they obtain from the database. This dissertation also defines new abstractions for managing information flows in a database and proposes new ways to address covert channels. Finally, the IFDB implementation and case studies with real applications demonstrate that database support for DIFC improves security, is easy for developers to use, and has good performance.by David Andrew Schultz.Ph.D

    MPSS

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.MIT Barker Engineering Library copy: issued in leaves.Includes bibliographical references (p. 153-157).This thesis describes mobile proactive secret sharing (MPSS), an extension of proactive secret sharing. Mobile proactive secret sharing is much more flexible than proactive secret sharing in terms of group membership: instead of the group of shareholders being exactly the same from one epoch to the next, we allow the group to change arbitrarily. In addition, we allow for an increase or decrease of the threshold at each epoch. We give the first known efficient protocol for MPSS in the asynchronous network model. We present this protocol as a practical solution to the problem of long-term protection of a secret in a realistic network.by David Andrew Schultz.S.M

    Calculation of high-order virial coefficients for the square-well potential

    Get PDF
    Accurate virial coefficients BN(λ,ε) (where ε is the well depth) for the three-dimensional square-well and square-step potentials are calculated for orders N = 5–9 and well widths λ = 1.1−2.0 using a very fast recursive method. The efficiency of the algorithm is enhanced significantly by exploiting permutation symmetry and by storing integrands for reuse during the calculation. For N = 9 the storage requirements become sufficiently large that a parallel algorithm is developed. The methodology is general and is applicable to other discrete potentials. The computed coefficients are precise even near the critical temperature, and thus open up possibilities for analysis of criticality of the system, which is currently not accessible by any other means

    Cluster integrals and virial coefficients for realistic molecular models

    Get PDF
    We present a concise, general, and efficient procedure for calculating the cluster integrals that relate thermodynamic virial coefficients to molecular interactions. The approach encompasses nonpairwise intermolecular potentials generated from quantum chemistry or other sources; a simple extension permits efficient evaluation of temperature and other derivatives of the virial coefficients. We demonstrate with a polarizable model of water. We argue that cluster-integral methods are a potent yet underutilized instrument for the development and application of first-principles molecular models and methods

    The utility of convection-permitting ensembles for the prediction of stationary convective bands

    Get PDF
    This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the UK. For each case, a 2.2-km grid-length 12-member ensemble and 1.5-km grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it

    Buckling Design and Imperfection Sensitivity of Sandwich Composite Launch-Vehicle Shell Structures

    Get PDF
    Composite materials are increasingly being considered and used for launch-vehicle structures. For shell structures, such as interstages, skirts, and shrouds, honeycomb-core sandwich composites are often selected for their structural efficiency. Therefore, it is becoming increasingly important to understand the structural response, including buckling, of sandwich composite shell structures. Additionally, small geometric imperfections can significantly influence the buckling response, including considerably reducing the buckling load, of shell structures. Thus, both the response of the theoretically perfect structure and the buckling imperfection sensitivity must be considered during the design of such structures. To address the latter, empirically derived design factors, called buckling knockdown factors (KDFs), were developed by NASA in the 1960s to account for this buckling imperfection sensitivity during design. However, most of the test-article designs used in the development of these recommendations are not relevant to modern launch-vehicle constructions and material systems, and in particular, no composite test articles were considered. Herein, a two-part study on composite sandwich shells to (1) examine the relationship between the buckling knockdown factor and the areal mass of optimized designs, and (2) to interrogate the imperfection sensitivity of those optimized designs is presented. Four structures from recent NASA launch-vehicle development activities are considered. First, designs optimized for both strength and stability were generated for each of these structures using design optimization software and a range of buckling knockdown factors; it was found that the designed areal masses varied by between 6.1% and 19.6% over knockdown factors ranging from 0.6 to 0.9. Next, the buckling imperfection sensitivity of the optimized designs is explored using nonlinear finite-element analysis and the as-measured shape of a large-scale composite cylindrical shell. When compared with the current buckling design recommendations, the results suggest that the current recommendations are overly conservative and that the development of new recommendations could reduce the acreage areal mass of many composite sandwich shell designs by between 4% and 19%, depending on the structure
    corecore